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Neutrinos at 
a glance

   Neutrinos have tiny masses, not very  hierarchical

   Neutrinos mix a lot (unlike the quarks)

   7 (or 9) new parameters for SM

   Lepton Flavor is not conserved

   Of all fermions, neutrinos are least understood

    First new physics beyond the SM...because... 



1. There are no right-handed neutrinos

2. There are only Higgs doublets of SU(2)L

3. There are only renormalizable terms

 So neutrinos are massless, with νe , νµ , ντ distinguished by 
separate lepton numbers  Le, Lµ, Lτ

 Neutrinos and anti-neutrinos are distinguished by the total 
conserved lepton number L=Le+Lµ+Lτ 

To generate neutrino mass we must relax 1 and/or 2 and/or 3 
e.g. type I see-saw adds right-handed neutrinos 

In the Standard Model...



   Origin of tiny neutrino mass
     Extra dimensions, See-saw mechanism, RPV SUSY 

   Unification of matter, forces and flavour
     SUSY, GUTs, Family Symmetry,… 

   Did neutrinos play a role in our existence? 

      Leptogenesis

    Did neutrinos play a role in forming galaxies?
     Hot/Warm Dark matter component

   Did neutrinos play a role in birth of the universe?
          Sneutrino inflation 

  Can neutrinos shed light on dark energy? Λ » mν
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Implications for PP and Cosmology



Light Majorana matrix

Diagonalise to give 
effective mass

Dirac matrix

Heavy Majorana matrix

Possible type II contribution 

P.Minkowski, PLB67(1977)421

  A very natural and appealing mechanism! 

  Neutrinos are so light because RH neutrino get heavy Majorana masses         
(L number violated at HE)                    

  Neutrinos are a probe of physics at high energy scales up to MGUT

  Large scales imply a new hierarchy problem             SUSY!   

P.Minkowski, PLB67(1977)421

MvνLν
c
L

Mv = mLRM
−1
RRm

T
LR ∼ m2

D

MR

Neutrino mass from see-saw



  Majorana masses can be generated via RPV SUSY

  Scalar partners of lepton doublets (slepton doublets) have same 
quantum numbers as Higgs doublets                             

   If R-parity is violated then sneutrinos may get (small) VEVs 
inducing a mixing between neutrinos and neutralinos χ

Drees, Diaz, Hirsch, Porod, Romao,Valle,…

LHC prediction from mSUGRA:

De Campos, Eboli, Hirsch, Magro, Porod, 
Restrepo,Valle

Neutrino mass from SUSY



Standard Model states
Neutrino mass states

Oscillation phase 3 masses + 3 angles + 1(or 3) phase(s) 
= 7(or 9) new parameters for SM
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Absolute neutrino mass scale? 

Three Neutrino Mixing



Atmospheric νµ  disappear, large θ23 (SK) (98)

Solar νe disappear, large θ12 (H/S,Ga,SK) (02)

Solar νe are converted to νµ+ντ (SNO) (02)

Reactor anti-νe disappear/reappear (KamLAND) (04)

Accelerator νµ disappear (K2K 04 , MINOS 06)

Accelerator νµ converted to ντ  (OPERA 10)

Accelerator νµ converted to νe , θ13 (T2K, MINOS) (11)

History of Neutrino Mixing
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MINOS Experiment
MMain IInjector NNeutrino 
OOscillation SSearch
High power beam produced 
by 120 GeV protons from the 
Main Injector at FNAL
Two functionally identical 
detectors:
Near detectorNear detector (ND) at Fermilab
to measure the beam 
composition and energy 
spectrum
Far detector Far detector (FD), 735km away, 
in the Soudan Mine, Minnesota 
to search for evidence of 
oscillations

735 km

Chris Smith You are 
here!



νµ → νe
T2K
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FIG. 6. The 68% and 90% C.L. regions for sin2 2θ13 for each value of δCP, consistent with

the observed number of events in the three-flavor oscillation case for normal (top) and inverted

(bottom) mass hierarchy. The other oscillation parameters are fixed (see text). The best fit values

are shown with solid lines.
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FIG. 3: Allowed ranges and best fits for 2 sin2(θ23) sin
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as a function of δ. The upper (lower) panel assumes the nor-
mal (inverted) neutrino mass hierarchy. The vertical dashed
line indicates the CHOOZ 90% C.L. upper limit assuming
θ23 =π

4 and ∆m2
32 =2.32×10−3 eV2 [10].

band samples, including events between 8 and 12 GeV,

indicates that the high-energy predictions are robust and

that the selected events are free of irregularities.

In conclusion, using a fit to νe discriminant and

reconstructed energy 2D distribution of FD νe can-

didate events, we find that 2 sin
2
(θ23) sin

2
(2θ13) =

0.041+0.047
−0.031 (0.079+0.071

−0.053) for the normal (inverted)

mass hierarchy and δ=0. We further find that

2 sin
2
(θ23) sin

2
(2θ13)<0.12 (0.20) at 90% C.L. Using the

less sensitive techniques of the 2010 analysis [12] on the

current data set yields a consistent measurement [29].

The θ13=0 hypothesis is disfavored by the MINOS data

at the 89% C.L. This result significantly constrains the

θ13 range allowed by the T2K data [14] and is the most

sensitive measurement of θ13 to date.
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parameter best fit ±1σ 2σ 3σ

∆m2
21 [10

−5eV2] 7.59+0.20
−0.18 7.24–7.99 7.09–8.19

∆m2
31 [10

−3eV2]
2.50+0.09

−0.16

−(2.40+0.08
−0.09)

2.25− 2.68

−(2.23− 2.58)

2.14− 2.76

−(2.13− 2.67)

sin2 θ12 0.312+0.017
−0.015 0.28–0.35 0.27–0.36

sin2 θ23
0.52+0.06

−0.07

0.52± 0.06

0.41–0.61

0.42–0.61
0.39–0.64

sin2 θ13
0.013+0.007

−0.005

0.016+0.008
−0.006

0.004–0.028
0.005–0.031

0.001–0.035
0.001–0.039

δ

(

−0.61+0.75
−0.65

)

π
(

−0.41+0.65
−0.70

)

π
0− 2π 0− 2π

Table 1. Neutrino oscillation parameters summary. For ∆m2
31, sin

2 θ23, sin
2 θ13, and

δ the upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy. See
Ref. [1] for details and references.

programme. This work was partly supported by the Transregio Sonderforschungsbereich
TR27 “Neutrinos and Beyond” der Deutschen Forschungsgemeinschaft.
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Figure 2. Upper panels: ∆χ2 as a function of sin2 θ13 for T2K and MINOS νe
appearance data (“LBL app”), all the other global data (“no LBL app”), and the
combined global data (“global”). Lower panels: contours of ∆χ2 = 1, 4, 9 in the
sin2 θ13 − δ plane for “LBL app” (curves) and for the global data (shaded regions).
We minimize over all undisplayed oscillation parameters. Left (right) panels are for
normal (inverted) neutrino mass hierarchy.

3. Global analysis

We move now to the combined analysis of the T2K and MINOS νe appearance searches

with global neutrino oscillation data as described and referenced in Ref. [1]. For the

reactor analysis we use the “recommended” analysis from Ref. [1], which adopts the

new reactor neutrino fluxes from Ref. [5] while including short-baseline reactor neutrino

experiments with baselines ! 100 km in the fit. The results for θ13 are summarized in

Fig. 2. For both neutrino mass hierarchies we find that the 2.5σ indication for θ13 > 0
from T2K gets pushed to the 3σ level (∆χ2 = 9) when combined with the weak hint for

a non-zero θ13 obtained from the remaining data [1], see also Ref. [6]. We find best fit

points at

sin2 θ13 = 0.013 , δ = −0.61π (normal hierarchy),
sin2 θ13 = 0.016 , δ = −0.41π (inverted hierarchy).

(1)

Due to some complementarity between T2K and MINOS one obtains, after
combining with the θ13 limit from the rest of the data, a “preferred region” for the

CP phase δ at ∆χ2 = 1, as seen in Fig. 2. Obviously this preference for the CP phase is

Schwetz, Tortola, Valle ’11

c.f.Fogli, Lisi, Marrone,Palazzo, Rotunno’11
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TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the
mass-mixing parameters, assuming old reactor neutrino fluxes. By using new reactor fluxes, the corresponding best fits and
ranges for sin2 θ12 and sin2 θ13 (in parentheses) are basically shifted by about +0.006 and +0.004, respectively, while the other
parameters are essentially unchanged.

Parameter δm2/10−5 eV2 sin2 θ12 sin2 θ13 sin2 θ23 ∆m2/10−3 eV2

Best fit 7.58 0.306 0.021 0.42 2.35

(0.312) (0.025)

1σ range 7.32 – 7.80 0.291 – 0.324 0.013 – 0.028 0.39 – 0.50 2.26 – 2.47

(0.296 – 0.329) (0.018 – 0.032)

2σ range 7.16 – 7.99 0.275 – 0.342 0.008 – 0.036 0.36 – 0.60 2.17 – 2.57

(0.280 – 0.347) (0.012 – 0.041)

3σ range 6.99 – 8.18 0.259 – 0.359 0.001 – 0.044 0.34 – 0.64 2.06 – 2.67

(0.265 – 0.364) (0.005 – 0.050)

Table I reports the bounds shown in Figs. 1–3 in numerical form. All the bounds are largely uncorrelated from each
other; e.g., the allowed ranges of δm2 and ∆m2 are basically independent on variations of the mixing angles within
their uncertainties (not shown). Nevertheless, we find it useful to report the joint ranges for the mixing parameters
sin2 θij , which can be used to test specific predictions of theoretical models for neutrino mixing, and which allow to
highlight the impact of recent appearance data.
Figure 4 shows the joint contours at 1, 2 and 3σ (∆χ2 = 1, 4 and 9) for each possible couple of sin2 θij parameters,

in the analysis with old reactor fluxes. Including new fluxes, the best fits and the associated Nσ contours are all
translated by small amounts (< 1σ) indicated by arrows. As a result of the dominance of T2K data in the θ13 fit, the
correlation in the (sin2 θ12, sin

2 θ13) plane induced by δm2-sensitive data [4, 11] is no longer apparent. Conversely,
there is a weak anticorrelation in the (sin2 θ23, sin

2 θ13) plane for relatively high θ13, due to the fact that the long-
baseline νµ → νe appearance probability is dominated by the product |Uµ3Ue3|2 ∝ sin2 θ23 sin

2 2θ13.
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Model Independent Parametrisation

where ΦTB
i are just the columns of the TB mixing matrix. As shown in Appendix B, due

to the unitarity of UR and the special form of the mass matrix MR in Eq. (4.1), the only
non-zero parameter is α13 = −α∗

31 whose dependence on the input parameters α, β, γ,∆
is given in Eqs. (B.15,B.16). The fact that only α13 = −α∗

31 is non-zero implies that UR

is of TM form as expected. Furthermore, since,

UT
RMRUR = Mdiag

R , (4.8)

it is then straightforward to derive the lepton mixing matrix UPMNS, as in Eq. (2.9),

UPMNS =
mD

yvu
UR . (4.9)

Due to the trivial structure of mD as well as a diagonal charged lepton sector, the PMNS
mixing matrix can thus be directly obtained from UR by permuting the second and the
third row as well as multiplying the Majorana phase matrix P on the right and another
phase matrix P ′ on the left, leading to UPMNS = UTM where,

UTM ≈ P ′
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P . (4.10)

The matrix P ′ has to be chosen such that the PMNS matrix without Majorana phases
is brought to the standard PDG form where the 2-3 and 3-3 elements are real and the
mixing angles are all between 0◦ and 90◦. In linear approximation, the required form of
P ′ becomes

P ′ ≈ diag(1, a+,−a−) , a± = 1± i ·
Im(α13)√

3
. (4.11)

Multiplying this explicit form of the phase matrix P ′ we obtain a mixing matrix that is
consistent with the standard PDG phase conventions.

It is useful to compare the TM mixing matrix in Eq. (4.10) to a general parametrisation
of the PMNS mixing matrix in terms of deviations from TB mixing [25],

UPMNS ≈







2√
6
(1− 1

2s)
1√
3
(1 + s) 1√

2
re−iδ

− 1√
6
(1 + s− a+ reiδ) 1√

3
(1− 1

2s− a− 1
2re

iδ) 1√
2
(1 + a)

1√
6
(1 + s+ a− reiδ) − 1√

3
(1− 1

2s+ a+ 1
2re

iδ) 1√
2
(1− a)






P , (4.12)

where the deviation parameters s, a, r are defined as [25],

sin θ12 =
1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , sin θ13 =

r√
2
. (4.13)

This comparison yields

s ≈ 0 , a ≈
Re (α13)√

3
, r cos δ ≈ −

2√
3
Re (α13) , δ ≈ arg (α13) + π , (4.14)
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The matrix P ′ has to be chosen such that the PMNS matrix without Majorana phases
is brought to the standard PDG form where the 2-3 and 3-3 elements are real and the
mixing angles are all between 0◦ and 90◦. In linear approximation, the required form of
P ′ becomes

P ′ ≈ diag(1, a+,−a−) , a± = 1± i ·
Im(α13)√

3
. (4.11)

Multiplying this explicit form of the phase matrix P ′ we obtain a mixing matrix that is
consistent with the standard PDG phase conventions.

It is useful to compare the TM mixing matrix in Eq. (4.10) to a general parametrisation
of the PMNS mixing matrix in terms of deviations from TB mixing [25],
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where the deviation parameters s, a, r are defined as [25],

sin θ12 =
1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , sin θ13 =

r√
2
. (4.13)

This comparison yields

s ≈ 0 , a ≈
Re (α13)√

3
, r cos δ ≈ −

2√
3
Re (α13) , δ ≈ arg (α13) + π , (4.14)
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where the deviation parameters s, a, r are defined as [24],
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. (3.11)

Setting,
s ≈ 0 , a ≈ 0 , (3.12)

we find [5]:
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TBR mixing has recently been obtained in an S4 setup [6]. Alternative proposals [25–36]
that have been put forward to accommodate the T2K result could similarly be compared
using the deviation parameters s, a, r. With future neutrino oscillation experiments being
able to not only accurately measure the reactor angle, parametrised here as r, but also
the atmospheric and solar deviation parameters a, s and eventually the CP violating
oscillation phase δ, it is clear that relating these deviation parameters via sum rules
comprise the next step in discriminating different models of lepton masses and mixings.

4 Conclusions

In the well known direct models of tri-bimaximal (TB) mixing, based on A4 and S4, the
TB mixing is enforced by a Klein symmetry ZS

2 × ZU
2 in the neutrino sector, together

with a ZT
3 symmetry in the charged lepton sector, where a common basis corresponds to

a diagonal charged lepton mass matrix. It is also well known that TB mixing can emerge
from either S4, which contains the generators S, T, U , or A4, which contains S, T . In the
case of A4 the U symmetry emerges accidentally as a result of the absence of flavons in
the 1′ or 1′′ representations of A4. Such models are called “direct models” since (some
of) the group generators remain unbroken in different sectors of the low energy effective
theory. Although this simple and appealing picture is apparently shattered by the T2K
results, which indicate a sizeable reactor angle θ13, simple alternative possibilities such as
tri-bimaximal-reactor (TBR) mixing remain.

We have proposed a renormalisable S4 model of leptons. We have studied the vacuum
alignment in the S4 model and shown that it predicts accurate TBR neutrino mixing due
to a TB violating flavon which preserves µ− τ antisymmetry but only enters the neutrino
sector at higher order, resulting in approximate TB mixing.

Although the S4 model of leptons presented here involve diagonal charged lepton mass
matrices, when the models are extended to include quarks, for example in the framework
of SU(5) unification, we would expect the charged lepton sectors (but not the neutrino
sectors) of these models to be modified. This could introduce additional contributions to
lepton mixing from the charged lepton sector. Interestingly the S4 model here preserves
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depending on the choice of the subdominant flavon, either φ120 or φ102. The parameters a
and b can be determined from the parameters in the superpotential. Later on we will see, that

a relative phase difference arg(a/b) = 45
◦
or 135

◦
, which translates into a Dirac CP phase

δ = 90
◦
or 270

◦
, is preferred by experimental data and that this would also maximise the

generated baryon asymmetry. Such a phase difference can be easily obtained in the context of

spontaneous CP violation from discrete symmetries as discussed in [13], which could be applied

here straightforwardly.

Due to the Z4 symmetries the RH neutrinos have no mass terms at the renormalisable level,

but they become massive after the flavons develop their vevs due to the following terms in the

superpotential
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From the symmetries alone also terms like φν
1 · φ120N1N2 would be allowed, but we assume,

that the messenger fields mediating such operators are absent. Under this assumption the RH

neutrino mass matrix is diagonal

MR =

�
MA 0

0 MB

�
. (2.14)

3 The phenomenology of CSD2

3.1 Predictive trimaximal mixing from CSD2

With the charged lepton mass matrix being diagonal, the PMNS mixing originates solely from

the neutrino sector. As discussed in the previous section we introduce two RH neutrinos Ni

(i = 1, 2) which entails one massless light neutrino. The RH neutrino mass matrix MR is

assumed to be diagonal and each Ni couples to its own flavon. Adopting φν
1 for the dominant

and φ120 for the subdominant term, the resulting Dirac neutrino Yukawa matrix is Y (120)
ν , see

Eq. (2.12).
2

Then the (type-I) seesaw formula leads to a simple effective light neutrino mass

matrix, given by
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(3.1)

where ma =
v2a2

MA
and mb =

v2b2

MB
can in general be complex. Clearly, the unitary matrix that

diagonalises Mν depends on only one complex parameter

mb

ma
= � eiα , �,α ∈ R . (3.2)

2We comment on the case where the subdominant flavon is taken to be φ102 below Eqs. (3.5-3.12).
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Thus, apparently following the adage “many a little makes a mickle”, one is led to a
2σ indication for a non-zero value of θ13. This corresponds to a value for θ13 in the 1σ
range (in degrees),

θ13 = 8o ± 2o. (6)

In any case it is certainly theoretically plausible that θ13 could take a value in the above
range [7], so it is interesting to consider this possibility, and we emphasize this more
general motivation.

It is well known that the solar and atmospheric data are consistent with so-called
tri-bimaximal (TB) mixing [8],
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corresponding to the mixing angles, 1

θ12 = 35.26o, θ23 = 45o, θ13 = 0o. (8)

The ansatz of TB mixing matrix is interesting due to its symmetry properties which seem
to call for a possibly discrete non-Abelian family symmetry in nature [9]. There has been
a considerable amount of theoretical work in this direction [10, 11, 12, 13, 14, 15]. The
presence of a non-zero reactor angle as in Eq.6 would be clearly inconsistent with the TB
prediction for the zero reactor angle in Eq.8 and so the TB ansatz would be excluded,
even though the predictions for the solar and atmospheric angles remain acceptable.

In this paper we shall explore the possibility of extending the TB mixing matrix to
allow for a non-zero reactor angle θ13, while at the same time preserving the predictions
for the tri-maximal solar angle and the maximal atmospheric angle given by Eq.8, namely
θ12 = 35.26o and θ23 = 45o. In order to maintain these predictions requires,

|Ue2|2

|Ue1|2
=

1

2
,

|Uµ3|2

|Uτ3|2
= 1. (9)

To leading order in Ue3 the conditions in Eq.9 correspond approximately to,

|Ue2|2 ≈ 1/3, |Uµ3|2 ≈ 1/2. (10)

We refer to the above proposal as as tri-bimaximal-reactor (TBR) mixing, to emphasize
that tri-maximal solar mixing and maximal atmospheric mixing are both preserved while

1Note that different versions of the TB mixing matrix appear in the literature with the minus signs
appearing in different places corresponding to differing choices of charged lepton and Majorana phases.
We prefer the convention shown which emerges from the PDG parametrization when the angles are set
equal to those shown in Eq.8
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With the charged lepton mass matrix being diagonal, the PMNS mixing originates solely from

the neutrino sector. As discussed in the previous section we introduce two RH neutrinos Ni

(i = 1, 2) which entails one massless light neutrino. The RH neutrino mass matrix MR is

assumed to be diagonal and each Ni couples to its own flavon. Adopting φν
1 for the dominant

and φ120 for the subdominant term, the resulting Dirac neutrino Yukawa matrix is Y (120)
ν , see
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where ma =
v2a2

MA
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MB
can in general be complex. Clearly, the unitary matrix that

diagonalises Mν depends on only one complex parameter

mb
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= � eiα , �,α ∈ R . (3.2)

2We comment on the case where the subdominant flavon is taken to be φ102 below Eqs. (3.5-3.12).
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θ12 = arcsin
1√
3
− �2

2
√

2
, (3.8)

θ13 =
�√
2

+
�2

2
√

2
cos α , (3.9)

δ = α − �
5

2
sinα (only up to order �) , (3.10)

α2 = −α + 2 � sinα − 3 �2 sin 2α , (3.11)

α3 = 0 . (3.12)

Note that the PMNS matrix has only one non-trivial Majorana phase as one of the neutrinos is

exactly massless. These results are only slightly modified if we choose the (1, 0, 2)
T

alignment

for the subdominant neutrino term: θ23 → π
2 − θ23, δ → π + δ, δe → π + δe, and δµ ↔ δτ . All

observables in the neutrino sector can be expressed in terms of ma, � and α. Excluding Majorana

phases (and the mass of the massless neutrino), this means that the model class makes three

predictions which should be testable in future oscillation experiments since θ13 is comparatively

large.

It is useful to compare the above predictions to a general leading order parametrisation of

the PMNS mixing matrix in the PDG convention in terms of deviations from TB mixing [15],
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where the deviation parameters s, a, r are defined as [15],
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(1 + a) , sin θ13 =

r√
2

. (3.14)

At leading order the above predictions can be expressed by

a = r cos δ , s = 0 , (3.15)

where

r =
2

3

mν
2

mν
3

∼ 2

15
→ θ13 ∼ 5

◦ − 6
◦ , (3.16)

where the predicted reactor angle may be compared to Eq. (1.1).
4

We emphasise that these

predictions hold true for both the (1, 2, 0)
T

as well as the (1, 0, 2)
T

alignment. In both cases,

with a suitable choice of phase convention, the leading order mixing matrix can be written in

the form,
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 P , (3.17)

where Eq. (3.17) corresponds to a small angle expansion of TM1 mixing in Eq. (1.2). However,

from the general argument given earlier in this subsection, we expect TM1 mixing in Eq. (1.2)

to be valid to all orders beyond the small angle approximation.

4Note that in a model where the charged lepton mass matrix is not diagonal, one must combine the charged
lepton corrections with the underlying TB neutrino mixing deviations to formulate the total observed deviation
from TB mixing as discussed in [16].
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2We comment on the case where the subdominant flavon is taken to be φ102 below Eqs. (3.5-3.12).
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Figure 1: The correlations between θ13 and the other two mixing angles in CSD2. The panels on
the left/right show the results for the (1, 2, 0)T /(1, 0, 2)T alignment. The regions compatible with
the 1σ (3σ) ranges of the atmospheric and solar neutrino mass squared differences and mixing
angles, taken from [2], are depicted by the red (blue) points.

3.2 Numerical results

In this section we present the numerical results for the two CSD2 cases defined by Eqs. (2.12)
and (2.14) in Figs. 1 and 2. The results were calculated with the REAP package [17] using the
recent global fit results from [2] for the solar and atmospheric neutrino mass squared differences
and mixing angles deduced from the new reactor fluxes. We have checked that the numerical
results agree well with the second order analytic results in Eqs. (3.5-3.12).

There are some interesting features of the plots. First of all, note that θ13 can go up to
more than 7◦ in the 3σ interval. It is, however, more interesting to look at the 1σ regions. The

8

0 50 100 150 200 250 300 350

4

5

6

7

∆ !°"

Θ13 !°"

0 50 100 150 200 250 300 350

4

5

6

7

∆ !°"

Θ13 !°"

0 50 100 150 200 250 300 350

4

5

6

7

Α2 !°"

Θ13 !°"

0 50 100 150 200 250 300 350

4

5

6

7

Α2 !°"

Θ13 !°"

Figure 2: The correlations between θ13 and the two physical phases in CSD2. The panels on
the left/right show the results for the (1, 2, 0)T /(1, 0, 2)T alignment. The regions compatible with
the 1σ (3σ) ranges of the atmospheric and solar neutrino mass squared differences and mixing
angles, taken from [2], are depicted by the red (blue) points.

atmospheric mixing angle θ23 has an upper 1σ bound of 45◦, which is very restrictive for the
(1, 2, 0)T alignment. Indeed, by this bound, θ13 > 5◦ is disfavoured in the (1, 2, 0)T case, while
for the (1, 0, 2)T alignment values up to 6.4◦ are still allowed, see upper panels of Fig. 1. This is
due to the fact that the deviations from θ23 = 45◦ have opposite signs for both cases. Turning
to the solar mixing angle, the 1σ region for θ12 induces a lower bound on θ13 of approximately
4.5◦, which is identical in both cases, see lower panels of Fig. 1.

It is also interesting to look at the phases in Fig. 2. In the (1, 2, 0)T alignment case a phase
difference α, cf. Eq. (3.2), of approximately 90◦ − 100◦ or 260◦ − 270◦ is preferred as can be
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seen in the upper left panel of Fig. 2.5 For the (1, 0, 2)T alignment, the preferred values of the
Dirac CP phase span bigger regions, but still the CP conserving case is not preferred, see upper
right panel of Fig. 2. Actually, the maximally CP violating cases δ = ±90◦ are in both cases
at the edge of the preferred regions. This is due to the fact that the corrections to a maximal
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4 PMNS-leptogenesis link

As has been noticed in [18–20], in models where TB mixing is realised via flavons which are
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of form dominance [20,21], the CP asymmetries for leptogenesis vanish.

On the contrary, in models with (1, 2, 0)T or (1, 0, 2)T vacuum alignment - since the flavon
vevs of the model are now no longer orthogonal - the asymmetry does not vanish, rendering
models of this type attractive for cosmology.

Furthermore, the two zero textures in Yν imply a direct link between the CP violation
for leptogenesis and the Dirac CP phase δ, as has been discussed for models with sequential
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(1, 0, 2)T , as well as on which of the RH neutrinos is the lightest, N1 with mass MA or N2 with
mass MB (cf. [18]). Explicitly, the “+” sign applies to the (1, 0, 2)T alignment with MA �MB

and to the (1, 2, 0)T alignment with MB � MA. The “−” sign holds for the other two cases,
the (1, 0, 2)T alignment with MB �MA and the (1, 2, 0)T alignment with MA �MB.

Since the baryon asymmetry YB is positive, it follows that, in models with a fixed alignment
and RH neutrino masses, leptogenesis requires δ in a specific range. In models where the “+”
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5 Summary and conclusions

Recently T2K have published evidence for a large non-zero reactor angle which, if confirmed,
would exclude the tri-bimaximal mixing pattern. In this paper we have presented a model which
fixes the reactor angle while preserving trimaximal solar mixing. In particular we have shown
how a variant of trimaximal mixing, called TM1 mixing in Eq. (1.2) with the solar angle given
by sin θ12 ≈ 1/

√
3, results from an extension of constrained sequential dominance involving new

vacuum alignments along the (1, 2, 0)T or (1, 0, 2)T directions in flavour space. We have shown
5Keep in mind that the Dirac CP phase is almost identical to the phase difference α in this case.
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where the deviation parameters s, a, r are defined as [15],
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At leading order the above predictions can be expressed by
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where the predicted reactor angle may be compared to Eq. (1.1).
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We emphasise that these

predictions hold true for both the (1, 2, 0)
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alignment. In both cases,

with a suitable choice of phase convention, the leading order mixing matrix can be written in
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 P , (3.17)

where Eq. (3.17) corresponds to a small angle expansion of TM1 mixing in Eq. (1.2). However,

from the general argument given earlier in this subsection, we expect TM1 mixing in Eq. (1.2)

to be valid to all orders beyond the small angle approximation.

4Note that in a model where the charged lepton mass matrix is not diagonal, one must combine the charged
lepton corrections with the underlying TB neutrino mixing deviations to formulate the total observed deviation
from TB mixing as discussed in [16].
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Table 4: The generators S, T, U of S4 and S, T of A4 as used in this article.

The generators and Clebsch-Gordan coefficients of S4 = ∆(24) and A4 = ∆(12) in a
basis where the triplets are explicitly real were derived in a general way in [41, 42]. As
was argued in [12], there exists a more suitable triplet basis for A4 models in which the
order-three generator T is brought to a diagonal and complex form. By now this choice
has become the standard or physical basis for direct models [19]. The corresponding basis
in the case of S4 can be found for instance in [43]. As A4 is a subgroup of S4 it is natural
to express this relation also in terms of the generators where the elements S, T, U generate
S4, while A4 is obtained by simply dropping the U generator [44].

Table 4 lists the generators of S4 and A4 in the physical basis. The primed representa-
tions of S4 differ only in the sign of the U generator. Dropping the U generator we obtain
A4. It is clear from the table that the doublet of S4 becomes a reducible representation
under A4, denoted by 1′′ and 1′.

The S4 product rules in the chosen basis are listed below, where we use the number
of primes within the expression

α(′) ⊗ β(′) → γ(′) , (A.1)

to classify the results. We denote this number by n, e.g. in 3⊗ 3′ → 3′ we get n = 2.
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mediate these effective operators to be matter-like, i.e. they should have a U(1)R charge
of 1, we find that we will always get a contribution from the third term of Eq. (2.3) as well.
Therefore, without introducing new flavon fields, we cannot find a simple UV completion
of the AF model where the neutrino mixing features a trimaximal pattern while breaking
the tri-bimaximal one.

2.2 Trimaximal mixing from A4 with extra ξ′ and ξ′′ flavons

The discussion in the previous subsection leads us to consider the case where extra flavons
ξ′ in the 1′ representation and ξ′′ in the 1′′ representations of A4 are added to the model
as already shown in in Table 1. This has previously been suggested (without the see-
saw mechanism) in [15] where the phenomenological consequences of the LO terms were
studied numerically. However the flavon alignment was not derived in [15] but simply
postulated. Remarkably, although the difference between the ξ′ and ξ′′ flavon VEVs
breaks the accidental U symmetry and thereby violates TB mixing, the presence of these
flavons respects the S symmetry and leads to TM mixing.

In this subsection we consider the effect on the neutrino mass matrices of adding
flavons ξ′ in the 1′ representation and/or ξ′′ in the 1′′ representations. In the subsequent
subsection we consider the vacuum alignment problem including these flavons. Assum-
ing the flavon alignments in Eq. (2.2), it is straightforward to find the structure of the
charged lepton and the light neutrino mass matrices. As the charged lepton Yukawa cou-
plings are non-renormalisable, a particular set of messengers is necessary to generate the
required couplings. Following [16], one can show that a minimal messenger completion
does not generate any off-diagonal entries in m!. Therefore, the leptonic mixing matrix
UPMNS is solely determined by the neutrino sector. Given the symmetries of Table 1, the
corresponding renormalisable neutrino part of the superpotential is extended to,

W ν
A4

= yLHuN
c + (y1ϕS + y2ξ + y′3ξ

′ + y′′3ξ
′′)N cN c . (2.4)

Inserting the flavon vacuum alignments in Eq. (2.2), and assuming both ξ′ and ξ′′ as
well as SM Higgs VEVs, we obtain the Dirac neutrino mass matrix mD as well as the
right-handed neutrino mass matrix MR,

mD =





1 0 0
0 0 1
0 1 0



 y vu , (2.5)

MR =
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 , (2.6)

where α = y1vS, β = y2〈ξ〉, γ′ = y′3〈ξ′〉, γ′′ = y′′3〈ξ′′〉.
The complex symmetric matrix MR is diagonalised by a unitary transformation UR,

UT
RMRUR = Mdiag

R . (2.7)
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S4 model of leptons in which the 1′ and 1′′ flavons of A4 are unified into a doublet of
S4 which is spontaneously broken to A4 by a flavon which enters the neutrino sector at
higher order. We study the vacuum alignment of the S4 model and show that it predicts
accurate trimaximal mixing with approximate tri-bimaximal mixing, leading to a new
mixing sum rule testable in future neutrino experiments. We also remark that both A4

and S4 models preserve form dominance [17] and hence predict zero leptogenesis [18], up
to renormalisation group corrections.

The layout of the rest of the paper is as follows. In Section 2 we first revisit the
Altarelli-Feruglio A4 model [12] with regard to the possibility of generating deviations
from TB mixing which respect TM mixing. As the obvious ideas do not yield TM mixing,
we then consider the model augmented by extra flavons in the 1′ and/or 1′′ representation.
We study the vacuum alignment and show that this model leads to TM mixing, with an
unconstrained reactor angle. In Section 3 we propose a renormalisable S4 model of leptons
and study its vacuum alignment leading to accurate trimaximal mixing with approximate

tri-bimaximal mixing. In Section 4 we give an analytic discussion of the perturbative
deviations to TB mixing arising from any TM model with a physical reactor angle leading
to a new mixing sum rule testable in future neutrino experiments. Section 5 concludes the
paper. Appendix A contains Clebsch-Gordon coefficients for S4 and A4, and Appendix B
describes a perturbative diagonalisation of the right-handed neutrino mass matrix.

2 A4 models of trimaximal mixing

2.1 The Altarelli-Feruglio A4 model of tri-bimaximal mixing

The original and well studied Altarelli-Feruglio (AF) model of lepton masses and mixings
[12] is formulated as an effective theory, defined purely by the particle content and the
symmetries. There exist two versions, one with right-handed neutrinos and one without.
For definiteness we will only consider the former which makes use of the elegant seesaw
mechanism to obtain effective light neutrino masses around the eV scale. The particle
content and the symmetries of the AF model we consider is presented in Table 1, including
the ξ flavon, but excluding the ξ′ and ξ′′ flavons which we shall consider later. In addition
the vacuum alignment in the AF model requires a further auxiliary flavon singlet ξ̃ which
does not acquire a VEV and is not shown in the table. Particles with a U(1)R charge of
2 are called driving fields. Setting their F -terms to zero leads to the F -term conditions
which control the alignment of the flavon fields.

The relevant effective superpotential terms of the Yukawa sector of the AF model are

W eff
A4

∼ LHuN
c + (ϕS + ξ)N cN c +

1

M
Hd

[

(LϕT )1 e
c + (LϕT )1′ µ

c + (LϕT )1′′ τ
c
]

. (2.1)

Here (· · · )r denotes the contraction of the A4 indices to the representation r. When the
three flavon fields ϕS, ξ,ϕT acquire their VEVs [12],

〈ϕS〉 = vS





1
1
1



 , 〈ξ〉 = u , 〈ϕT 〉 = vT





1
0
0



 , (2.2)
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with ξ’, ξ’‘  MR respects S but not U invariance → TM2 mixing 

without ξ’, ξ’’ mD, MR respect S and U invariance → TB mixing 

A4 Model
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Altarelli, Ferguglio

TB violation 

L=3, Nc=3 

4 Trimaximal mixing in terms of perturbative devi-

ations to tri-bimaximal mixing

In this section we make a perturbative and analytic study of the deviations to TB mixing
which are predicted by the A4 and S4 models of TM mixing, subject to the phenomeno-
logical constraint that the reactor angle is perturbatively small, which enables TM mixing
to be viewed as a perturbative expansion around the TB limit. This is natural from the
point of view of S4 models where TB mixing arises at LO, broken by higher order correc-
tions which preserve TM mixing. It also enables alternative phenomenological proposals
to be viewed and compared on the same footing.

Our starting point is the right-handed neutrino mass matrix for the A4 model in
Eq. (2.6). It can be written as the sum of a matrix that preserves TB mixing and a
matrix that violates it,

MR = MTB
R +∆MR , (4.1)

where

MTB
R = α





2 −1 −1
−1 2 −1
−1 −1 2



+ β





1 0 0
0 0 1
0 1 0



+ γ





0 1 1
1 1 0
1 0 1



 , (4.2)

and

∆MR = ∆





0 1 −1
1 −1 0
−1 0 1



 , (4.3)

with
∆ = 1

2(γ
′′ − γ′) , γ = 1

2(γ
′ + γ′′) . (4.4)

In the S4 model the explicit form of ∆MR is given in Eq. (3.9). In both the A4 and S4

models the TB violating matrix is required to be small,

|∆| " |α|, |β| . (4.5)

This assumption is necessary in order to meet the experimental constraints that any
deviations from TB mixing should be small. The parameter γ on the other hand need
not be small as it does not break the TB pattern.

Since MTB
R is diagonalised by the TB mixing matrix UTB, this enables MR to be

diagonalised perturbatively by expanding about the TB mixing case. Writing the matrix
UR which diagonalises the right-handed neutrino mass matrix in terms of its column
vectors Φi,

UR = (Φ1,Φ2,Φ3) , (4.6)

we can expand UR, for small deviations from TB mixing, in linear approximation around
its TB form using

Φi = ΦTB
i +∆Φi , ∆Φi =

∑

j

αijΦ
TB
j , (4.7)
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We now consider the effect of having both flavons ξ′ and ξ′′ in the 1′ and 1′′ representa-
tions of A4. Then the terms proportional to g′′3 and g6 would be switched on in the flavon
superpotential of Eq. (2.10) The corresponding extra terms in the F -term conditions of
Eqs. (2.12,2.13) would thus modify the physical solution of Eq. (2.14) to

〈ϕS〉 = vS





1
1
1



 , v2S = −
g5u2 + g6u′u′′

3g4
, u = −

g′3u
′ + g′′3u

′′

g2
. (2.16)

This solution has the unpleasant feature of leading to arbitrary physics. For instance, if
y′3u

′ = y′′3u
′′, where y′′3 denotes the Yukawa coupling of ξ′′ to N cN c, see Eq. (2.4), then this

implies that the mass matrix MR in Eq. (2.6) has a tri-bimaximal structure, since γ′ = γ′′,
and thus the reactor angle vanishes identically. It is for this reason that models with either

ξ′ or ξ′′ essentially yield the same physics. However, adding both types of flavons in A4

generates a bothersome ambiguity in physical predictions. In the next section the above
ambiguity is removed by unifying the flavons ξ′ and ξ′′ into an S4 doublet ην , whose VEV
components are aligned along a U preserving direction, thereby restoring TB mixing, at
least approximately.

3 S4 model of trimaximal mixing

3.1 The effective S4 model of leptons

As pointed out in the previous section, the A4 model with ξ′ and/or ξ′′ flavons cannot
explain the smallness of the deviations from TB mixing. Furthermore, adding both non-
trivial one-dimensional flavons leads to an ambiguity in physical predictions. In order to
cure these shortcomings we consider an S4 model in which the 1′ and 1′′ representations
of A4 are unified into the ην doublet of S4 while the triplet representations remain. The
complete list of lepton, Higgs and flavon fields is given in Table 2.3 Similar to the A4

model we have a U(1)R symmetry as well as a Z3 symmetry which separates the neutrino
and the charged lepton sector.

In the neutrino sector of the S4 model there are three flavon fields: ϕν and ξν (analogous
to ϕS and ξ of the AF model) and ην (which unifies the two A4 flavon fields ξ′ and ξ′′).
The neutrino part of the effective superpotential is then,

W ν,eff
S4

∼ LHuN
c + (ϕν + ξν + ην)N

cN c +
ζν
Mχ

ηνN
cN c, (3.1)

analogous to Eq. (2.4), where, as in the A4 model, the Dirac neutrino mass matrix takes
the trivial form mD of Eq. (2.5). However an additional flavon ζν in the 1′ representation

3In principle the triplet fields can either be identified with the 3 or the 3′ of S4. They differ from each
other only in the sign of the U generator (see Appendix A) such that all representation matrices of the 3

have determinant +1, while this is not the case for the 3′. In the case of the right-handed neutrinos N c

and the lepton doublet L, we are free to choose the type of S4 triplet as long as it is the same for both
fields, and we choose the 3. Note that the triplet flavon ϕν must furnish a 3′ of S4 because it is coupled
to the symmetric product N cN c.
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 <ζν> breaks S4→A4 
and TB→TM2 

unifies ξ’, ξ’’ into 

a doubletη, 
restores TB 

N c

ϕν, ην, ξν

N c N c

ην

χ

ζν

χc
N c

Figure 1: Leading and next-to-leading order right-handed neutrino mass contributions.

messenger pair χ,χc, the NLO diagram reproduces uniquely the effective operator in
Eq. (3.1), ζν

Mχ
ηνN cN c. Note that a similar term with ην replaced by ϕν is forbidden

by S4 as the symmetric product N cN c does not include the triplet 3. Plugging in the
flavon VEVs and using the S4 Clebsch-Gordan coefficients of Appendix A we obtain a
contribution to MR of the form

∆MR = x1x2
wνzν
Mχ



−





0 0 1
0 1 0
1 0 0



+





0 1 0
1 0 0
0 0 1







 . (3.9)

The relative minus sign arises as the ζν VEV breaks the U symmetry of S4. Its presence
leads to a deviation from the TB structure which would exist if the two matrices were
added instead.

The S4 model thus gives rise to TB neutrino mixing at LO which is broken to a TM
mixing pattern by NLO corrections induced by the VEV of the S4 breaking flavon field ζν.
This naturally explains why the reactor angle as well as the deviations from maximal
atmospheric mixing are relatively small. Provided the charged leptons are diagonal, the
lepton mixing matrix is purely determined by the structure of the right-handed neutrino
mass matrix MR, given in Eq. (2.6), with

α = y1vν , β = y2uν , γ′ = γ −∆ , γ′′ = γ +∆ , (3.10)

where we have defined
γ = y3wν , ∆ = x1x2

wνzν
Mχ

. (3.11)

Notice that γ′ and γ′′ are equal at LO. The deviations from a TB mass matrix arise only
at NLO which is parameterised by ∆

γ
∼ zν

Mχ
.

The charged lepton sector is formulated at the renormalisable level, using two new
pairs of messengers, Ωi and Ωc

i (i = 1, 2). With the particles and symmetries listed in

allowed in W ν,mess

S4
since they become relevant only at next-to-next-to-leading order with the ζν flavon

entering quadratically; as the Klein symmetry ZS × ZU of the neutrino sector [19] is restored in this
diagram by the quadratic appearance of ζν , such a higher order term yields a TB contribution to MR.
Therefore, the only significant term contributing to the breaking of TB to TM is the one shown in
Figure 1.
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More generally in GUTs, when charged lepton corrections dominate ... 
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2) Lepton mixing sum rule 
(for                       ) 

See e.g.: hep-ph/0508044 

group equations and the unitary transformations VeL
and VνL

entering formula (4) can be

extracted.

Turning to the RG effects, as we pointed out in [27, 28], if third family contributions

dominate both CN and RG corrections, the CN and RG effects can be subsumed (at leading

log) into a single parameter η denoting the non-universality in the 33 component of the PL

matrix. An interested reader can find the technical details of how to obtain the low-scale

diagonalisation matrices VeL
and VνL

given their GUT-scale counterparts V̂eL
and V̂νL

elsewhere

[27, 28] (in particular see Eqs.(2.14) and (2.17) of [28]) although we emphasize that the resulting

lepton mixing angles and phases were not explicitly expanded in terms of η as we do here.

The formulae for the lepton mixing angles and phases θij , δij in terms of the neutrino

mixing angles and phases θν
ij , δν

ij , together with small perturbative corrections due to charged

lepton mixing angles and phases θe
ij , δe

ij have already appeared in the literature [14, 31]. The

new physics that we wish to discuss here is the effect of the additional perturbative CN/RG

corrections described by the universal parameter η. With η included, using the techniques

described above, the leading order expansions for the physical lepton mixing angles and phases

in terms of the relevant neutrino and charged lepton sector quantities θν,e
ij , δν,e

ij become:

s23e
−iδ23 ≈ sν

23

(

1 +
η

2
cν
23

2
)

e−iδν
23 − θe

23c
ν
23e

−iδe
23 , (8)

s13e
−iδ13 ≈ θν

13e
−iδν

13 − θe
12s

ν
23e

−i(δν
23

+δe
12

) +
mν

2

mν
3

ηcν
12s

ν
12c

ν
23s

ν
23 e−i(δν

12
−δν

23
) , (9)

s12e
−iδ12 ≈ sν

12

(

1 +
η

2
cν
12

2sν
23

2
)

e−iδν
12 − θe

12c
ν
23c

ν
12e

−iδe
12 . (10)

They should be compared to the results with only charged lepton corrections included [14, 31],

to which these results reduce in the limit η = 0. We have neglected θe
13 since in GUT models

we expect that θe
13 ≈ λ3 and so θe

13 terms may be regarded as higher order. We have included

terms like mν
2

mν
3

η which may compete with θe
12 ≈ λ/3, and have also included terms like θe

23 ≈ λ2

which are not so different from θe
12 ≈ λ/3. Terms of the order O(m1/m2) and O(m1/m3) have

been neglected, which corresponds to the assumption of a strong hierarchy of the neutrino

mass spectrum. This also implies mν
2

mν
3

≈
√

∆m2
!

|∆m2
A
|

which is a quantity directly accessible in the

6
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1 Introduction

The discovery of large, close-to tri-bimaximal lepton mixing has lead to a revolution in
flavour model building. Over the last years, a variety of models has been constructed
[1] which feature tri-bimaximal mixing [2] in the neutrino mass matrix. Furthermore,
alternatives for underlying mixing patterns are discussed as well, for instance bimaximal
neutrino mixing (for a model realisation, see e.g. [3]). Many of them have in common that
θMNS
13 in the neutrino sector (almost) vanishes. In the context of Grand Unified Theories
(GUTs) and quark-lepton unified models, such a special mixing pattern in the neutrino
sector typically receives, however, corrections from charged lepton mixing which is often
dominated by a sizable θe12. With θe12 ! θe13, θ

ν
13, a leptonic (MNS) mixing angle θ13 of the

size

θMNS
13 ≈

1√
2
θe12 (1)

is generated (see, e.g., [4]).3 The charged lepton mixing θe12, in turn, is often related to θd12
via GUT relations. The down quark mixing θd12 is in principle model-dependent, however,
since the up-type quark masses are more hierarchical than the down-type quark ones, in
many classes of models the down quark mixing is larger than the up-quark mixing and
the relation θd12 ≈ θC ≈ 13◦ holds to some approximation. A well known case, realised in
many models in the literature, appears when the quark-lepton mass ratio mµ/ms = 3 is
realized via a “Georgi-Jarlskog” [5] Clebsch factor of 3 in the (2,2)-element of Ye. Then,
θe12 = θd12/3 ≈ θC/3 holds and the ubiquitous prediction

θMNS
13 =

1

3
√
2
θC ≈ 3◦ (2)

arises.
However, given the current experimental hints at a large value θMNS

13 , e.g. from T2K
[6] or the latest Minos data (for a recent global fit, see [7]), this prediction is somewhat
challenged. In this letter we will therefore discuss how alternative Clebsch factors and
GUT scale quark-lepton mass relations, including the novel possibilities proposed recently
in [8], can influence the predictions for θMNS

13 in unified flavour models.

2 The relation between θe12 and θd12 in unified models

In the following, we will assume that θd12 ≈ θC ≈ 13◦ [9], as discussed above, and that Yd

and Yu are hierarchical. To be explicit, one may simply take the case that Yu is (approxi-
mately) diagonal. We will below include formulae for general θd12 such that the results can
readily be adopted to other cases as well. Furthermore, we will focus on classes of models
where the mass matrices feature zero (or negligible) (1,1)-elements. In the following discus-
sion we will distinguish between the case of unified models with Pati-Salam gauge group

3We remark that the relation holds exactly only for θ23 = 45◦ and we use this form here for simplicity.
The more precise relation is given by θMNS

13 = θe12 sin(θ
MNS
23 ).

1

θe12 ≈ θd12
3

0810.3863

(c.f.  alternative GUT relations:  Antusch, Maurer;                                    

Marzocca, Petcov,Romanino,Spinrath)                              

in a class of models

Georgi-Jarlskog GUT relation

CSD2  θν13 ∼ 5o − 6o

θe12s
ν
23 ≈ 1

3
√
2
θC ≈ 3o

T2K
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Figure 13: Predictions of the AKM model both in the hadronic and leptonic sectors. In the first two
rows we show the predictions for various observables vs. Sψφ. The blue points correspond to positive
NP effects in �K such that 1.2 < �K/(�K)SM < 1.3 and ∆Md/∆Ms is SM-like. The green points in
the plots of BR(Bs → µ+µ−) vs. BR(Bd → µ+µ−) and ∆Ms/∆MSM

s vs. BR(Bs → µ+µ−) show the
correlation of these observables in the MFV MSSM. The last row refers to the predictions for leptonic
observables. The green points explain the (g − 2)µ anomaly at the 95% C.L., i.e. ∆aµ > 1× 10−9.
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Flavour changing in AKM model



AC RVV2 AKM δLL FBMSSM LHT RS

D0 − D̄0 ��� � � � � ��� ?

�K � ��� ��� � � �� ���
Sψφ ��� ��� ��� � � ��� ���

SφKS ��� �� � ��� ��� � ?

ACP (B → Xsγ) � � � ��� ��� � ?

A7,8(B → K∗µ+µ−
) � � � ��� ��� �� ?

A9(B → K∗µ+µ−
) � � � � � � ?

B → K(∗)νν̄ � � � � � � �
Bs → µ+µ− ��� ��� ��� ��� ��� � �
K+ → π+νν̄ � � � � � ��� ���
KL → π0νν̄ � � � � � ��� ���
µ → eγ ��� ��� ��� ��� ��� ��� ���
τ → µγ ��� ��� � ��� ��� ��� ���
µ+N → e+N ��� ��� ��� ��� ��� ��� ���

dn ��� ��� ��� �� ��� � ���
de ��� ��� �� � ��� � ���
(g − 2)µ ��� ��� �� ��� ��� � ?

Table 8: “DNA” of flavour physics effects for the most interesting observables in a selection of SUSY
and non-SUSY models ��� signals large effects, �� visible but small effects and � implies that
the given model does not predict sizable effects in that observable.

• vanishingly small effects (one black star).

This table can be considered as the collection of the DNA’s for various models. These DNA’s

will be modified as new experimental data will be availabe and in certain cases we will be

able to declare certain models to be disfavoured or even ruled out.

In constructing the table we did not take into account possible correlations among the

observables listed there. We have seen that in some models, it is not possible to obtain

large effects simultaneously for certain pairs or sets of observables and consequently future

measurements of a few observables considered in tab. 8 will have an impact on the patterns

shown in this DNA table. It will be interesting to monitor the changes in this table when the

future experiments will provide new results.
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Conclusion
Neutrino mass and mixing is possibly the most important discovery in 
particle physics since the top quark at Fermilab in 1995 but is BSM with 
implications for PP/Cosmo

Since 1998 there have been major breakthroughs every couple of years, 
latest is θ13 at T2K/MINOS (non-zero in global fits at 3σ )

Non-zero θ13 excludes TB lepton mixing but new possibilities remain: 
TBR, TM1, TM2,...

Family symmetry approach remains viable, with θ13 providing additional 
refinements to the picture, e.g. S4→A4 giving TB→TM2 at HO

Combination of Family symmetry and SUSY GUTs is very powerful and 
leads to corrections to lepton mixing from quark mixing and ameliorates 
the SUSY Flavour and CP problems with characteristic DNA profiles
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